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Abstract- We present a novel entropy  coding  technique  which is based  on recur- 
sive interleaving of variable-to-variable length  binary  source  codes.  The  encoding  is 
adaptable  in  that  each  bit  to  be encoded  may  have an associated  probability  estimate 
which depends  on previously  encoded bits.  The  technique  can achieve arbitrarily 
small  redundancy, and may  have  advantages over arithmetic  coding,  including most 
notably  the  admission of a simple and fast decoder. We discuss  code  design and per- 
formance  estimation  methods,  as well as practical  encoding and decoding  algorithms. 

1 Introduction 

In  data compression algorithms  the need  frequently  arises to  compress a binary se- 
quence in which each  bit  has some estimated  distribution,  i.e.,  probability of being 
equal to zero. If long runs of bits have  nearly  identical  distributions,  then  simple 
source  codes,  most notably Golomb’s runlength codes [I], are  quite efficient. How- 
ever,  in many  practical  situations,  not  only  does the  distribution  vary  from  bit  to  bit, 
but  it is desirable to  have the  estimated  distribution for a bit  depend  on  the values 
of earlier bits.  Accommodating  such a dynamically  changing  probability  estimate 
is tricky  because the decoder  must  make the  same  estimates as the encoder.  Thus, 
before the  ith  bit  can  be decoded, the value of the first i - 1 bits  must  be  deter- 
mined.  This  complication  makes  it difficult to efficiently use  simple  source  codes  such 
as  runlength codes. 

To our knowledge, currently  the only efficient encoding  methods  in  this case are 
arithmetic  coding [2, 31 and  the relatively  unknown  technique  called  interleaved  en- 
tropy  coding  [4], which is a generalization of the “block Melcode” [5]. In  this  paper, 
we describe a new entropy  coding  technique which is a generalization of the inter- 
leaved entropy  coding  method.  The  technique efficiently encodes a binary  source  with 
a bit-wise adaptive  probability  estimate by recursively  encoding  groups of bits  with 
similar distributions,  ordering  the  output in a way that is  suited to  the decoder. As 
a result,  the  decoder  has low complexity. 

The functionality of our coding  technique is essentially the  same  as  that of binary 
arithmetic  coding; however, our  technique  does  not yield an  arithmetic  code  and 
there  are  many  practical differences. Arithmetic  encoding of one  bit  requires a few 
arithmetic  operations  and, unless  approximations  are  made, at least  one multiplica- 
tion.  Our  encoder requires  no arithmetic  operations except those  needed to  choose a 
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code  index  based  on the  bit  distribution; however it requires  some  bookkeeping and 
bit  manipulation  operations.  Our encoder  requires  more  memory than  arithmetic 
coding. Arithmetic  decoders  are generally of similar  complexity to  the encoders,  but 
our  decoder is much  simpler than our  encoder: it needs fewer operations  than  the 
encoder,  and  requires only a small  amount of memory. 

1.1 The Source Coding Problem 

We examine the problem of compressing a sequence of bits b l ,  bz, . . . from a random 
source. The  estimate of source  probability pi = Prob[bi = 01 may depend  on  the values 
of the source  sequence  prior to index i ,  and  on  any  other  information available to  both 
the encoder  and  decoder.  This  dependence encompasses both  adaptive  probability 
estimation  as well as correlations or memory  in the source.  Consequently, efficient 
encoding  requires a bit-wise adaptable  encoder. We are  not concerned  here with 
methods of modeling the source,  and so we make  no  distinction  between the  actual 
and  estimated  source  distributions. 

Without loss of generality, we will assume that pi  2 1/2 for each  index i. If this 
were not  the case for some pi ,  we could  simply  invert bit bi before  encoding to make 
it so (and  this inversion can clearly be  duplicated  in the  decoder). 

We also  assume that  the decoder  can  determine  when  decoding is complete.  In 
practice,  this  often  occurs  automatically, or straightforward  methods  can  be  used, 
such as  transmitting  the sequence  length  prior to  the compressed  sequence.  Such 
methods will not  be  addressed  here. 

Although we only  discuss the compression of binary sequences, given any nonbi- 
nary  source we can assign prefix-free binary codewords to  source  symbols to  produce 
a binary  stream.  Thus  the  technique  can  be  applied to  nonbinary  sources as well. 

1.2 The Recursive Interleaved  Entropy  Coding  Concept 
In  this  section we give an overview of how the entr'opy coding  technique works and 
why it yields low redundancy. To simplify the  explanation, some of the processing 
details  are  omitted  until  Section 2. 

Since,  by assumption,  each  bit  has  probability of zero at least 1/2, we are con- 
cerned  with  the  probability region [1/2,1]. We partition  this region into several 
narrow  intervals, and  with  each  interval we associate a bin that will be used to  store 
bits.  When  bit bi arrives, we place it into  the  bin  corresponding to the interval con- 
taining p i .  Because  each  interval spans a small  probability  range,  all of the  bits in a 
given bin have  nearly the  same  probability of being  zero, and we can  think of each 
bin as  corresponding to  some  nominal  probability  value. 

For each bin  (except the leftmost  bin, which contains  probability 1/2) we specify 
an  exhaustive prefix-free set of binary codewords. When  the  bits collected in a bin 
form  one of these codewords, we delete  these  bits  from the bin  and  encode  the value 
of the codeword by placing  one or more new bits  in  other bins'. This process is 

'The  ordering of the new bits  in  a bin is not  straightforward  and we save these  details for 
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conveniently  described  using a binary  tree.  Each  codeword  is  assigned t o  a terminal 
node  in the  tree,  non-terminal nodes are  labeled  with a destination  bin,  and  the 
branch  labels  (each a zero  or  one)  correspond to  the  output  bits  that  are placed in 
the  destination  bins. 

For example,  Figure 1 shows a tree  that might  be used for 
a bin  with  nominal  probability 0.9. The prefix-free codeword 
set for this  bin is {00 ,01 ,  l } ,  shown as labels of the  terminal 
nodes  in the  tree. If the codeword to  be processed  in the  bin 
is 00, which occurs  with  probability  approximately 0.81, we 
place a zero  in the bin that contains  probability 0.81. If the 
codeword is 1, first we place a one  in the bin  containing  prob- 
ability 0.81, which indicates that  the codeword is something 
other  than 00, then we place a zero in  the  bin  containing 
probability 0.53 because, given that  the codeword is not 00, 
the  conditional  probability  that  the codeword is 1 is approximately 0.53. We can 
see that  this process  might contribute  to  data compression  because the most likely 
codeword is 00, which is represented  using a single bit. 

For the leftmost  bin we do  not define a tree  such  as  the  one  in  Figure 1. Instead, 
bits  in  this  bin  form  the encoder’s output.  Bits  that reach the first bin have  probability 
of being  zero very close to 1 / 2  and  are  thus  nearly incompressible, so transmitting 
these  bits  uncoded  does  not  add much redundancy. 

During the encoding  process, bits  arrive  in various  bins either  directly from the 
source or as a result of processing  codewords  in other  bins.  Our goal  is to  have bits 
migrate to  the leftmost  (uncoded)  bin, where they  are  transmitted. To accomplish 
this, we impose the  constraint  on  the design of our  trees  that  all new bits  resulting 
from the processing of each  codeword  must be placed in  bins  strictly  to  the left of the 
bin  in  which the codeword was formed.  Apart from our  desire t o  move bits  to  the 
left,  this  constraint also  prevents  encoded  information  from  traveling  in  “loops”, which 
would make  coding difficult or  impossible. Thus if a bin  has  nominal  probability p ,  
we would like the probability of a zero for each  output  bit t o  be  in  the  range [ l / 2 , p ) .  
A tree  with  this  property  is  said  to  be useful at p .  Perhaps  surprisingly, useful trees 
exist  everywhere: 
Theorem For any  given  probability  value  p E ( 1 / 2 ,   1 ) ,  there  exists  a  useful  tree,  i.e., 
one  with  the  property  that all output  bits  have  probability of zero in the  range  [1/2,p) .  
This is proved by constructing  an infinite  family of trees for which at least  one  tree  is 
useful at any given p E ( 1 / 2 , 1 ) .  Figure 2 illustrates  this  construction. We omit the 
details of the proof. 

When we reach the end of the  bit sequence to  be encoded and no  codewords 
remain  in  any  bin,  there will generally be  partially  formed codewords in  one  or  more 
bins.  Since these  bits  are needed for decoding, we append  one or  more  extra  bits to  
each of these  partial codewords to  form  complete  codewords  which  are  then  processed 
in  the  normal  manner2. 

Section 2.2. 
2The  method of selecting these  extra  bits  that “flush” the encoder is relatively unimportant. 
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We can see that some redundancy is present in  this  system  because  the  bins have 
positive width - the probability  associated  with a bit  that arrives  in a bin will 
usually  not exactly  equal  the  bin's  nominal  probability,  and  bits in the leftmost  bin 
are  transmitted  uncompressed even though  they  may  not have  probability of zero 
exactly  equal to  1/2. However, we can  reduce the  redundancy by increasing  the  the 
number of bins  and/or  the size of the  trees. 

In  practice,  the  encoder  and decoder do 
not keep track of probability values. In- 
stead,  each  bin is assigned an index,  start- 
ing with  index 1 corresponding to  the left- 
most  (uncoded)  bin. At each  non-terminal 
node  in the  tree we identify the index,  rather 
than  the nominal  probability  value, of the 
bin to which the associated output  bit is 
mapped.  The  constraint we impose  on en- 
coder  design is that each  output  bit from 
the  tree for bin j must  be  mapped  to a bin 
with  index  strictly less than j .  No com- 
putations involving  probability values are 
needed apart from those which  may  be re- 
quired to  map each  input  bit bi to  the ap- 
propriate  bin  index. 

... (( ::::1 
0"*1 

001 

110 

Figure 2: A tree tha t  is  useful  for p E 
( m ,  yn-2), where n 2 2.  Here T~ is the 
root in (1/2,1] of pi = (1 - p)+l for 
i > 1, and yo = 1. 

For example, a five bin  encoder is defined by the  trees shown in  Figure 3. Fig- 
ure 3(c) indicates,  e.g.,  that if codeword  01 is formed  in  bin 4 then we place bits l,O,l 
in  bins  3,2,1 respectively. A complete  encoder  description  also  requires  identification 
of the probability  region over which  each  bin  should be used,  or a rule for mapping 
input  bits  to  bins. We omit  this  detail to  simplify the discussion. 

(a) bin 2 (b) bin 3 (c) bin 4 

4 l l  
0 0000 0001 

0 001 

Figure 3: A possible  design  for a five bin encoder. The first bin is uncoded, hence no tree 
is shown. Bin indices are shown in italics, output bits in boldface. The input  bits are the 
codewords  shown as terminal  nodes of each tree. 

1.3 Relation to  Interleaved  Entropy  Coding 
An important  special case of the  entropy coder  arises  when  all output  bits  generated 
from  each tree  in  the  encoder  are  mapped  to  the  uncoded  bin.  Imposing  this  restric- 
tion  reduces  encoding  complexity,  and the encoder amounts  to interleaving  several 
separate variable-to-variable length  binary codes. This  technique was first  suggested 
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in [5], which  used  interleaved  Golomb  codes for compression.  Howard [4] gives a more 
thorough  analysis of interleaved  entropy  coding. 

By increasing the number  and  complexity of the variable-to-variable  length  codes, 
it’s  clear  that  that we can make asymptotic  redundancy  arbitrarily  small.  With 
the  additional flexibility of the technique  presented  here, a given redundancy  target 
should  be  achievable  with fewer and/or  simpler  codes. 

2 Encoding and Decoding 

2.1 Decoder Operation 

We  now describe the encoder  and  decoder  operation,  beginning  with  decoding since 
it determines  the  encoding  procedure.  It is convenient to  think of each  bin  in the 
decoder  as  containing a list of bits. To decode,  initially we place  all of the encoded 
bits  in  the first (uncoded)  bin,  and all other  bins  are  empty. At any  time,  each 
nonempty  bin  (with  the  exception of the uncoded  bin) will contain a single  codeword 
or a suffix of a codeword.  Decoding the next  source  bit  amounts to  taking  the next 
bit  from the bin to which the source bit was assigned. If this  bin is empty, we first 
reconstruct  the  codeword in that bin by taking  bits from other  bins  as  needed. 

Software  decoding  uses  two  recursive  procedures, GetBit and  Getcodeword. 
GetBit simply  takes the next  available  bit  from the  indicated  bin. If the bin is 
empty  then  it first  calls  Getcodeword.  Given an  empty  bin,  Getcodeword  deter- 
mines which codeword  must  have  occupied the bin by taking  bits from other  bins 
(via GetBit), then places that codeword  in the  bin.  The  Getcodeword  procedure is 
similar to Huffman  decoding,  except that at each step we take  the  next  bit from the 
appropriate  bin,  not  (necessarily) from the encoded  bit  stream. 

To decode the  ith  bit, let binindex equal the  index of the  bin  to which the  ith 
bit would have been  assigned.  This  assignment  may  be  a  function of any  previously 
decoded  bits  and  any  other  information  available to  both  the encoder  and  decoder. 
Then  the  ith decoded  bit is equal to GetBit (binindex).  

2.2 Encoder  Operation 
To ensure that decoding is possible, we must  pay  careful  attention to  the order  in 
which bits  are  processed by the encoder.  Processing  bits  in the correct  order is not 
straightforward. 

One  encoding  method that produces  encoded  bits  in the  appropriate  order involves 
maintaining a linked  list of bit values.  Each  record  in the list stores  the  bit value and 
the index of the bin that  contains  the  bit. Initially the list contains  the  entire  input 
sequence  in  order of arrival.  When a codeword is processed, we delete  the  bits  that 
formed the codeword  and  insert  the  resulting  output  bits  in  the list at the location 
of the first  bit  in the codeword. 

To determine  the  order  in which the codewords  are  processed,  perhaps  the con- 
ceptually  simplest  method  (though  in  our  experience  not  the  fastest) is at each  step 
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to  identify the  nonempty  bin  with  the highest  index. We take  bits  (in  order) from 
this  bin  until we have  formed a codeword, appending flush bits if needed to  complete 
the final  codeword of the  bin. 

For example,  suppose the linked list 
for the encoder of Figure 3 is as shown 
in  the left half of Figure 4. Bin 4 is 
the highest  indexed nonempty  bin, so 
we search  through  the list for bits  in  bin 
4 until we form the codeword 01. This 
codeword  produces output  bits  1,0,1,  in 
bins 3,2,1 respectively (see Figure 3(c)), 
so these  records  are  inserted in the linked 
list as shown  in the  right half of Figure 4. 

When  all  bits  are  in  the first bin, 
the encoder output consists of these  bits 
taken in order. 

To manage  long  input sequences with 
limited  memory, we can  partition  the in- 

(m 
m 
m 

~~ 

m 
m 

Figure 4: One step of encoding in software 
using the encoder of Figure 3. In each 
pair, the left (unshaded) box indicates bit 
value; the right (shaded) box shows bin 
index. 

put sequence into blocks of known size and encode  each block separately3 

3 Estimating  Rate 
We would like to  quantify  the  performance of a given encoder  design. One  metric 
we can  estimate  is  the  rate  (the  expected  number of output  bits  per  input  bit) when 
the  input  to  the  encoder is an independent  and  identically  distributed  stream of bits 
into  bin j ,  each  bit  having  probability of zero equal to  p .  We denote  this  quantity by 

Since bins  produce  output  bits  that  are placed  in other  bins,  estimates of R j ( p )  
generally  rely on  rate  estimates for other  bins. If bin e has  as  input X1 bits  with 
probability q1 and X2 bits  with  probability q 2 ,  the  resulting  contribution to  rate might 
be  approximated as 

( P ) .  

1. XlRt(41) + X 2 & ( 4 2 ) ,  or 

The first approximation would tend  to  be more accurate when  long runs of bits in 
bin e have the  same  probability,  and  the second would be  more  accurate if the two 
types of bits  are well mixed. The first tends  to be  optimistic when R e ( p )  is convex n, 
the second tends  to  be optimistic  when & ( p )  is convex U. 

In  this  section we describe  two recursive techniques for estimating R j ( p )  based  on 
the above approximations.  Both  techniques usually give quite good estimates.  The 
rate  estimates  produced  are  asymptotic  as  the  input sequence length becomes  large, 
i.e., the cost of bits used to  flush the  encoder is not  included. 

3We  have developed  a  more efficient alternative  technique  but  it is beyond the scope of this  paper. 
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The  rate  estimation  techniques  do  not give exact  results  because  the  rate  functions 
are  in  general  nonlinear,  and  because  bits  arriving  in  each  bin  may  not  be  independent. 
This  dependence  arises  because  encoding  a single  codeword  may  result  in  multiple 
output  bits  being  placed in the same  bin. 

3.1 First  Method for Rate  Estimation 
We can  estimate Rj ( p )  recursively  using the  estimates for R l ( p ) ,  R 2 ( p ) ,  . . . , R j - l ( p ) .  
If for each  input  bit  non-terminal  node k of the  tree for bin j produces v k ( p )  expected 
bits, each with  probability of zero q k ( p ) ,  then we use the  estimate 

1, j = 1  

where B ( k )  is the  output bin  index for the  kth  node  in  the  tree,  and  the  sum is  over 
all non-terminal  nodes in the  tree. 

For example,  using (1) to  estimate Rd(p)  for the encoder of Figure 3 gives 

3.2 Second Method for Rate  Estimation 
In the second  technique for estimating R j ( p ) ,  for each  bin we produce a list of (X,  Q) 

pairs.  Each  pair  in the list  represents  an  expected  number of bits X and  corresponding 
probability of zero q arising  from the  output of some  higher  indexed  bin  or  from the 
source.  Initially  each  list is empty  except the list for bin j ,  which contains  the  pair 

At each  step, if the list for bin k' (initially l = j )  contains  pairs (X,, QI),  (X2,  q 2 ) ,  . . . , 
( W  

(Xrn, qm) ,  we compute  the  total  expected  number of bits in the  bin 

k 

and  the  average  probability of a zero  in the bin 

Treating  the  input  to  bin k' as A, bits, each with  probability of zero &e, we compute 
the  resulting  pairs ( X i ,  Q;) at each  non-terminal  node  in  the  tree  and  append (Xi, 4;) 
to  the list for the  bin  to which the  output  bit  associated  with  node k is mapped. 

We repeat  this  procedure,  continuing to  the first bin.  Finally,  our  estimate of 
R j ( p )  is equal to  the  total  expected  number of bits  in  the first bin, 111. 

Using this  technique  to  estimate & ( p )  for the  encoder of Figure 3 gives 
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For p E ( l / 2 ,  I),  the  method of (1) gives a slightly  higher rate  estimate in this  example. 
Variations of these  techniques  can  be  used to  accurately  estimate  the  rate  obtained 

for a source that produces  bits  with varying (but known) distributions. 

4 Code Design 
In  this  section we illustrate a procedure to  design a coder. We begin  with a redun- 
dancy  target A which  is the maximum allowed redundancy  (in  bits  per  source  bit) 
and a set of candidate  trees  to  be used in  the  encoder.  In  this  context each tree  does 
not  include  assignments of bin  indices to  non-terminal  nodes or output  bit  labels  to 
branches.  These  assignments will be  made  as  part of the design  procedure. 

In  addition to  the family of trees  illustrated  in  Figure 2, there  are  many  other 
useful trees we can use to design  good  codes. For example,  Figure 5 shows the five 
useful trees  with four terminal  nodes. 

Figure 5: The  set of  useful trees with four terminal nodes. 

We select a trees for each  bin in  order of increasing  bin  index. When designs for 
bins 1 , 2 ,  . . . , j - 1 have  been  completed,  designing the   j t h  bin amounts  to selecting a 
tree for the  bin, assigning bin indices to  non-terminal  nodes and  output  bit  labels  to 
branches, and  calculating +I, the probability value where we switch  from  bin j - 1 
to bin j .  (Of course  no  design work is required for the first  bin  since it is uncoded  and 
zo = 1/2.) For example,  Figure 6 shows a case  where the encoder  has  been  designed 
for the first three  bins,  and  our  redundancy  target A is met  when p is less than some 
value p*. Thus we know that z 3  5 p" ,  and we need to  specify the  tree  to use for the 
fourth  bin of the  encoder. 

To do  this, we can  take from our  set of candi- 
A date  trees  any  tree  that is useful at p* and assign 

branch  and  non-terminal  node  labels  based  on g,  
this  probability value. That is, we calculate  the 2 
branch  probability for each  non-terminal  node 5 
in the  tree  and  label  the  branches so that a zero H 
output is more likely than a one at each  node. 
Then, at each  non-terminal  node, if a zero out- 

-0 

""""""""""""""""" "_ 4 

1 
P- put  bit  occurs  with  probability q,  we map  this  bit 

to  the bin  with  index l such that q E [zt-l, ze). 
This  construction  maps  output  bits  to  bins 

in regions where the  redundancy is less than  the  target A, and  it  can  be shown that 

Figure 6: Redundancy of an encoder 
after designing the first three bins. 
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(to  the  extent  that (1) is accurate)  the  redundancy at probability p* is  strictly less 
than A. This follows in part from the following lemma (proof omitted): 
Lemma If a tree  is  useful  at p* ,  then  the expected number of output  bits  is  less  than 
the expected number of input  bits, or equivalently, 

(where  Xk(p*)  is the expected number of output  bits  generated  at  node k and  the  sum 
is over  all  non-terminal  nodes IC). 

Thus,  the  tree we have selected for the new bin  produces  redundancy less than 
A at probability p*. Since the  rate functions for each  bin  are  continuous, we have 
extended  the  range where the encoder meets  the  redundancy  target. 

We can also try assigning branch  labels,  and even  selecting a tree,  based  on some 
probability  target value  larger than p*. This  alternative generally  produces  larger 
redundancy at p*,  but frequently  meets  the  redundancy  target A at p* and may 
extend  further  the  range over which bin j is used,  which can  help to  reduce the  total 
number of bins  used in  the  encoder. 

5 Results  and Conclusion 
Figure 7 shows the  redundancy of 0. 

some entropy  coders designed  using 
the technique  described  in  Section 4. 0. 
The  trees in these codes  have an aver- -? 

a 

m 

16 

12 

age of about 6 terminal nodes. 0.08 
Figure 8 shows the  estimated  and 2 

measured  redundancy of a 23-bin g 0.04 
coder  which uses only the family of 5 
trees  illustrated  in  Figure 2. The esti- E o.oo 
mated  and  measured  redundancy  are 0.5 0.6 0.7 0.8 0.9 1.0 
clearly in close agreement,  and  the two 
redundancy  estimates  obtained  using Figure 7: Estimated redundancy of some en- 
the of Section  3 are indistin- coders t h a t  have a Small number of bins, com- 
guishable at this scale. puted  using the method of Section 3.2. 

Decoding  speed was tested for a 10-bin  coder. For this  test, a sequence of prob- 
abilities was generated from a uniform distribution  on  [0,1],  and  random  bits were 
generated  according to  these values. We are  not concerned with modeling the prob- 
abilities  here, so bin  assignments were computed  outside of the  timing  loop  as  the 
optimal  assignment given the  bit  probability; in this way we measured only the speed 
(and efficiency) of the  actual coding. 

This coder was tested  against  the  “shift/add”  binary  arithmetic  coder from [6] 
with  parameters b = 16, f = 12. The  arithmetic coder was modified t o  be similarly 
isolated  from the modeling;  bit  probabilities were supplied  in a form  convenient to 
the  coder. 

“ I  

S 

U 

probability of zero 
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The measured  decoding  speed for our  10-bin  coder was about  2.7  Mbit/sec, com- 
pared to  2.0 Mbit/sec for the  arithmetic  coder.  The  test used a Sun  Ultra  Enterprise 
with a 167 MHz UltraSPARC processor. In  this  test  the  redundancy of both coders 
was very low: 0.0032 bits/source  bit for our coder and 0.0019 bits/source  bit for the 
arithmetic  coder. 

It  should  be  noted  that  our en- E 
coder was about 8 times slower than 2 1 

our  decoder.  In  contrast to  the de- 2 0.002- 
coding, we made  no effort to opti- .$ 
mize the encoding;  regardless,  en- 
coding  does appear t o  be  inherently 2 0.001 - 
slower than decoding. 11 

tions (eg.  [7])  may be faster than  the 0.000 I I I I 

arithmetic coder we tested. How- 

Other  arithmetic  coding varia- 3 
0.5 0.6 0.7 0.8  0.9 1.0 

probability of zero 
ever, our  results  suggest  that, at this 
early stage of development,  our  tech- 
nique offers decoding  speeds  compet- 
itive with  those of arithmetic  coding. 

Figure 8: Estimated  (solid  curve) and measured 
(individual points) redundancy  for a 23-bin  coder 
which  has a designed  maximum  redundancy of 
0.003 bits/source bit. 
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